报告题目:Conditional-mean multiplicative operator models for count time series
报告专家:朱复康教授
报告地点:9-122会议室
报告时间:2024年3月28日(周四)上午10:00-11:00
报告摘要:Multiplicative error models (MEMs) are commonly used for real-valued time series, but they cannot be applied to discrete-valued count time series as the involved multiplication would not preserve the integer nature of the data. Thus, the concept of a multiplicative operator for counts is proposed (as well as several specific instances thereof), which are then used to develop a kind of MEMs for count time series (CMEMs). If equipped with a linear conditional mean, the resulting CMEMs are closely related to the class of so-called integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) models and might be used as a semi-parametric extension thereof. Important stochastic properties of different types of INGARCH-CMEM as well as relevant estimation approaches are derived, namely types of quasi-maximum likelihood and weighted least squares estimation. The performance and application are demonstrated with simulations as well as with two real-world data examples.
报告人简介:朱复康,吉林大学数学学院教授、博士生导师,吉林国家应用数学中心副主任、院长助理、概率统计与数据科学系主任。2008年博士毕业,2013年破格晋升教授,2021年任唐敖庆领军教授。主要从事时间序列分析和金融统计的研究,已经在Annals of Applied Statistics、Journal of Business & Economic Statistics、Statistica Sinica、中国科学-数学等期刊上发表论文多篇,主持国家自然科学基金面上项目3项和青年基金1项,曾获得教育部自然科学奖二等奖、吉林省科学技术奖二等奖、长春市有突出贡献专家等奖励,入选美国斯坦福大学发布的全球前2%顶尖科学奖榜单。现任中国现场统计研究会、全国工业统计学教学研究会、中国数学会概率统计分会等学会的理事或常务理事,现任SCI期刊Statistical Papers的Associate Editor,是JRSSB、JBES、AoAS等80余个SCI期刊的匿名审稿人。
作者:佘纬;编辑:刘鹍;审核:郭晖;上传:郭敏。